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Abstract
Many-body correlations in electrolyte systems are important when the electrostatic coupling
and/or the volume fraction of ions are not low. Such correlations are ignored in the traditional
theories of electrolytes based on the Poisson–Boltzmann approximation. In the general case, the
ion density profiles (ion–surface correlation functions) and the ion–ion correlation functions in
diffuse electric double layers are strongly interdependent. Both have to be included in the
treatment of the system to capture many essential properties. In this work the coupling between
the ion–ion and ion–surface correlations and effects of this coupling are illustrated explicitly and
graphically (visually). The average forces that act on the ions in the double layer are analysed.
This leads to an understanding of mechanisms in action in the inhomogeneous electrolyte near a
surface. Charge separation in an electrolyte outside an uncharged surface and charge inversion
of highly charged surfaces are thereby used as examples of what insights can be gained by this
kind of approach. Some links to mechanisms behind like-charge attraction are also discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Many-body correlations have been the focus in modern
theoretical treatments of electrolyte systems for a considerable
time, but it is relatively recently that an understanding
of the importance of such correlations has penetrated out
to a wider section of the scientific community. The
spreading of this understanding has perhaps been helped by
some ‘counterintuitive’ and therefore intriguing findings in
electrolyte theory applied to colloid chemistry and soft matter
physics, like the phenomena of like-charge attraction and
charge inversion (often called overcharging) caused by ion–ion
correlations.

Charge inversion occurs when the number of counterions
near a particle is larger than what is needed to neutralize its
surface charge, so the particle behaves in many respects as if it

has opposite charge compared to its bare charge. It is important
to distinguish charge inversion caused by ion–ion correlations
from that which occurs because of the chemical affinity of
counterions to the surface, a quite common phenomenon [1]. In
both cases the counterions are very strongly attracted towards
the surface, which makes the concentration of counterions high
there, but the mechanisms are different. In the correlation
mechanism, the charge inversion is a consequence of the
collective behaviour of the ions outside the surface and appears
even in the absence of any specific interactions with the
surface.

The like-charge electrostatic attractions make a radical
break from the conventional picture of interactions between
equally charged particles in electrolytes. This picture is
based on the Derjauin–Landau–Verwey–Overbeek (DLVO)
theory [2, 3] for interparticle interactions. It says that the
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electrostatic double-layer interactions are always repulsive for
equally charged particles, while attractions originate from van
der Waals (vdW) forces between the particles. The fact that
the vdW forces between the particles to a large extent are
caused by correlations between electrons has been well known
and accepted for a long time, but it has not been generally
appreciated that the other charged particles in the system—
the ions—also correlate and give rise to an attraction for
essentially the same reason. While the presence of the latter
kind of attraction was pointed out by Hill [4] in the 1960s (as
correlations between charge fluctuations) and by Oosawa [5]
in the 1970s, it was not until the 1980s that it was found that
the ion–ion correlation effect was large enough to be important
for aqueous electrolyte solutions of divalent ions [6, 7]. In
such systems the double-layer pressure between two equally
charged surfaces can be attractive for small surface separations,
while it is always repulsive for large separations. The double-
layer attraction can be much stronger than the vdW force.
For monovalent aqueous electrolytes, on the other hand, the
double-layer interactions are repulsive for all distances in most
cases and the conventional picture then holds reasonably well.

There is, in fact, a common denominator between charge
inversion and like-charge attractions. Both depend essentially
on how strongly the counterions are attracted to the surface. To
see this, let us linger for a while on the subject of like-charge
attraction before we go on to the main theme of this paper,
which is an analysis of the forces on the ions near a surface.

The great difference between monovalent and multivalent
ions mentioned above is not caused by variations in the strength
of the ion–ion correlation attraction. The correlation attraction
between charged planar surfaces at short separations is, in fact,
nearly the same for monovalent and multivalent ions. It is
the strength of the repulsive forces between the surfaces that
varies to a large extent for small separations, depending on the
ion valencies [6]. As an example, let us consider two planar
surfaces with a uniform surface charge density σ in contact
with a bulk electrolyte solution. For simplicity we use the
primitive model of electrolytes where the ions are charged hard
spheres and the solvent is modelled as a dielectric continuum
with relative permittivity (dielectric constant) equal to εr. The
permittivity of vacuum is denoted ε0.

One can quite easily show that the correlations between
the ions in the slit between the two surfaces lead to an attractive
electrostatic pressure contribution there that approaches the
value −σ 2/(2εrε0) when the surface separation becomes
small (this comes from the electrostatic ion–ion correlation
interactions across the midplane of the slit, see the appendix for
a proof and other details). Note that this value is independent
of the ionic valencies! Since some counterions must remain
between the surfaces for small separations when σ �= 0, their
concentration increases when the surface separation decreases,
which is the reason why the electric correlation attraction
does not disappear for small separations. The increase in ion
concentration makes, however, the repulsive contribution from
the ideal pressure (momentum transfer across the midplane of
the slit) to become very large for small surface separations, so
the total double-layer pressure is always repulsive there when
σ �= 0. This repulsion, which is proportional to the ion density

at the midplane, is stronger for monovalent counterions than
for multivalent ones since a larger number of the former is
needed to neutralize the surface charge (per unit area).

The important question is what happens when the
separation increases. The attractive electrostatic correlation
pressure remains initially at about the same magnitude,
−σ 2/(2εrε0), while the repulsive ideal pressure decreases
rapidly since the ion concentration at the midplane goes down.
If the repulsive pressure (including the repulsion from ion–
ion collisions) goes down sufficiently, the attractive correlation
pressure can dominate provided σ is large enough and then the
total pressure between the surfaces becomes attractive (see, for
example, [8] for the behaviour of the different contributions
to the pressure). The attraction then appears in the multivalent
case at large σ for two reasons: (i) the number of counterions is
not so large and (ii) the counterions are attracted to the surfaces
to a large extent, which makes the ion concentration around
the midplane to be relatively low for the surface separations
in question. Thus the appearance of double-layer attraction
is closely linked to how strongly the counterions are attracted
to the surfaces, i.e. how their concentration profile looks like.
(Here we have considered the pressure between the surfaces.
When the bulk electrolyte concentration is nonzero, the net
double layer pressure is the difference between the pressure in
the slit and in the bulk, but this does not change the conclusions
provided σ is large enough.)

Thus, it is important to understand the mechanisms
that govern the distribution of ions near a surface for both
like-charge attractions and charge inversion caused by ion–
ion correlations. More specifically it is a question of the
coupling between ion–surface correlations (distributions of
ions near a surface, i.e. concentration profiles) and ion–ion
correlations (distributions of ions around an ion, i.e. pair
distributions). Perhaps the most physical way to investigate
the coupling between these correlations is to consider the
average forces that act on the ions in the inhomogeneous
electrolyte near the surface. The force on an ion originates
from the ions and solvent in its surroundings, from the surface
charge and the material behind the surface. In bulk the pair
distributions of spherical ions are spherically symmetric and
the average force on an ion is zero. Near a surface the
pair distributions are distorted from spherical symmetry by
the presence of the surface and the average force on an ion
from the surrounding ions is therefore nonzero and can be
calculated from the pair distributions. The average force fi

on an ion of species i is related to the potential of mean
force wi by the usual relationship between force and potential:
fi = −∇wi . The potential of mean force and the ion
density distribution ni are related by the Boltzmann relation
ni = nbulk

i exp(−βwi), where nbulk
i is the bulk density, β =

(kBT )−1, kB is Boltzmann’s constant and T is the absolute
temperature. This gives the link between the ion–surface and
ion–ion correlations that we are going to pursue in this work.
The important point is that various contributions to the force of
different physical origin can be calculated which gives detailed
information about the mechanisms in action. Thereby the
fairly complicated interdependence of Coulomb correlations
and excluded-volume effects can be explicitly illustrated and
analysed.
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Such an analysis of the structure of double layers based
on forces has been done before for 1:1 and 2:2 electrolytes
with ions of both equal and unequal sizes [9, 10]. Here
we shall refine the analysis for the 2:2 case and extend it to
3:1 electrolytes. The main objective is thereby to illustrate
the often intricate coupling between the ion–surface and ion–
ion correlations in an explicit and graphical manner. This
leads to a depth in understanding of these matters that is
difficult to obtain by other means. The phenomena of charge
separation in the electrolyte outside an uncharged surface and
charge inversion at high σ are thereby used as examples of
what insights can be gained by this kind of approach. Both
phenomena have been observed in theoretical treatments of
electric double layers for a very long time [11–15]. There
have recently appeared many different approaches of various
degrees of sophistication to treat charge inversion of particles;
for recent reviews that cover many aspects of this topic
see [16–18] and references therein. The importance of the
influence of both Coulomb correlations and excluded-volume
effects have been pointed out before, for recent examples
see [19, 20]. In the current work we shall focus on what
can be learned from an accurate theoretical treatment of ion–
surface and ion–ion correlations in inhomogeneous electrolytes
outside a charged surface in the primitive model. Thereby, we
shall limit ourselves to conditions that are relevant for aqueous
systems at room temperature and surface charge densities in
the range that is of most interest in surface and colloid science.

2. Background

Let us consider a planar surface in contact with a bulk
electrolyte solution of concentration csalt. An ion of species
i has a charge qi = Zi e0, where Zi is the valency and e0 is
the elementary unit charge. For simplicity we assume that all
ions are charged hard spheres with the same diameter a. The
surface has a uniform surface charge density σ . We will use a
coordinate system with the z axis perpendicular to the surface
and the x and y axes in the lateral directions. The origin is
located at the distance of closest approach of the ionic centres
to the surface. We will use the notation r = (x, y, z).

The ionic number density in the inhomogeneous
electrolyte outside the surface is denoted ni (z) and the charge
density equals

ρ(z) =
∑

i

qi ni (z). (1)

The mean electrostatic potential ψ(z) satisfies Poisson’s
equation:

− εrε0
d2ψ(z)

dz2
= ρ(z), (2)

with the boundary condition ψ(z) → 0 when z → ∞.
In the PB approximation, where ion–ion correlations are

ignored, the ion density profiles ni(z) outside a charged
surface have monotonic decay towards the bulk density when z
increases. The charge density ρ(z) also decays monotonically.
The number of counterions per unit area in a region outside the
surface, 0 < z < z ′ for any z ′, is always less than required
to neutralize both the surface charge density and the coions in
the same region. Thus the sign of the total charge in z < z ′

(including the surface charge) is always the same as that of σ
while the sign of the charge in z > z ′ is opposite. The mean
electrostatic potential ψ(z) has the same sign as σ and decays
monotonically for all z > 0. For large z we have

ψ(z) ∼ σ 0
PB

εrε0κD
e−κDz (PB approximation) (3)

where σ 0
PB is (by definition) the effective charge density of

the surface and κD is the inverse Debye length (defined from
κ2

D = ∑
i ni q2

i /(kBT εrε0)). The charge density decays like

ρ(z) ∼ −σ 0
PBκDe−κDz (PB approximation) (4)

when z → ∞ (the decays in equations (3) and (4) are linked
by Poisson’s equation). The effective surface charge satisfies
σ 0

PB ∼ σ when σ → 0, but in general σ 0
PB is a nonlinear

function of σ that tends to some constant when σ → ±∞,
i.e. σ 0

PB saturates for large surface charge densities. The value
of this constant depends on the kind of electrolyte and its sign
is the same as for σ (for symmetric electrolytes its absolute
value is (32εrε0csalt RT )1/2, where R is the gas constant).

None of these features of the PB theory are valid in the
general case where ion–ion correlations are treated correctly.
The PB approximation is generally valid only in the limit
σ → 0 and infinite dilution of electrolyte. For monovalent
(1:1) electrolytes in aqueous solution at room temperature it
holds, however, as a good approximation provided σ is not
too large and the ionic bulk concentration is not too high. In
other cases both quantitative and qualitative deviations occur.
The deviations are particularly prominent at high electrostatic
coupling, like for multivalent electrolytes where the Coulomb
correlations are strong, but deviations occur also when the ion
size is large.

In fact, one cannot strictly separate the effects of ionic
charge and size. The anion–cation correlations give very
important contributions to the properties of the electrolyte
system. Because of the attraction between the ions the anion–
cation contact distance strongly influences the magnitude of the
effect of the electrostatics, in particular for highly charged ions.
For cation–cation and anion–anion correlations the ionic size is
less important because of the Coulombic repulsion. For highly
charged ions, the ionic size must be quite large before the size
matters in the latter cases (the size has to be larger than the
‘Coulomb hole’ created by the Coulombic repulsions). In the
primitive model the ionic sizes we consider here are effective
sizes that contain the effects of solvation. A small and/or
highly charged ion will be strongly solvated and its effective
size is therefore appreciably larger than its bare size.

A quantitative deviation from the PB prediction is that the
decay length is not equal to the Debye length. The electrostatic
potential ψ(z) decays for large z like in equation (3) when the
concentration is not too high, but with a decay parameter κ
that is different from κD and with a different prefactor of the
exponential function [21–23]. The decay parameter satisfies
κ2 = ∑

i ni qi q0
i /(kBT εrε0), where q0

i is the effective charge
of the ions of species i in bulk solution (cf the definition of
κD above). For multivalent ions q0

i differs substantially from
qi except at high dilution and hence κ can be very different
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from κD. This is an effect of the strong ion–ion correlations.
The fact that the prefactor in the decay of ψ(z) differs from
the PB prediction means that the effective charge density σ 0

of the surface (as defined from the prefactor in analogy to
equation (3)) is different. This too is an effect of the ion–
ion correlations. For large surface charge densities σ 0 does
not saturate in the way predicted by the PB theory and it does
not need to have the same sign as σ (i.e. charge inversion may
occur) [23, 24]. Furthermore, for asymmetric electrolytes σ 0

is not proportional to σ when σ → 0 and it is nonzero when
σ = 0. These facts will be further explored in this work.

In general, the functional form of the decay of the
potential ψ(z) and the charge density profile ρ(z) for large z is
determined by the bulk solution; the decay length is the same
as for the ion–ion pair distributions in the bulk phase (more
specifically, the charge distribution around an ion in the bulk
phase and the charge density profile outside the surface decay
in general with the same κ) [21, 22, 25]. A further consequence
of this fact is that, when the bulk electrolyte concentration is
increased, the profile and the potential turn oscillatory at the
same concentration as the pair distributions in the bulk does.
We then have for large z

ρ(z) ∼ const × cos(ωz + ϑ) e−K z,

where ω and K are determined by the bulk solution. The
parameter ϑ is a phase factor that depends on the surface
properties, which the prefactor ‘const’ also does. Thus, an
oscillatory profile is not due to some property of the surface
and it will, for example, be oscillatory irrespective of the value
of σ . Only the amplitude and the phase of the oscillations are
surface-dependent. The charge distribution outside the surface
will consist of an infinite series of ‘layers’ with alternating
positive and negative net charges, although the magnitude
diminishes exponentially fast. This behaviour is the common
one in molten salts, but occurs also in electrolyte solutions
when the electrolyte concentration is high enough.

When the bulk electrolyte concentration is lower than the
threshold for the oscillatory correlations, there can, however,
be one or a couple of oscillations in the immediate vicinity of
the surface when σ is sufficiently large. After these oscillations
the profile decays for larger z in a monotonic exponential
manner. In such cases there is a layer just outside the surface
with a net charge of opposite sign to that of σ followed by
a layer with the same sign as σ . The number of counterions
near the surface then exceeds the amount needed to neutralize
the surface charge. This effect of ion–ion correlations has
been known for a long time [11, 13–15] and constitutes the
phenomenon of charge inversion we mentioned in section 1.
Contrary to the oscillatory profiles for large z just discussed,
this is a true surface-induced phenomenon (the two phenomena
can, however, occur simultaneously). The excess counterions
are not sitting at the surface, they are located as a diffuse
layer near the surface. This excess of counterions makes
the electrostatic potential far from the surface to have a sign
opposite to that of σ , i.e. the effective charge σ 0 has an inverted
sign. Thus it appears from a distance as if the surface has
inverted its sign of charge.

Note that layering of ions outside a surface can also occur
because of crowding of counterions near the surface when σ is
high [11, 26]. Then two or more layers of counterions can form
next to the surface without the occurrence of charge inversion.
Here we shall only treat the case where charge inversion occurs
and this as a consequence of strong ion–ion correlations.

3. Density profiles and pair distributions of
inhomogeneous electrolytes

The ion density profiles outside charged surfaces can be
accurately calculated by integral equation theory at the pair
distribution level in the inhomogeneous electrolyte solution
(see the appendix for details). In these kinds of theories
both the anisotropic pair distributions and the density profiles
are self-consistently calculated. Thereby one achieves much
higher accuracy than simpler integral equation theories, like
those that utilize isotropic pair correlation functions from bulk
to calculate density profiles of the inhomogeneous fluid (see
the appendix). Furthermore, the pair distributions can be used
to analyse various mechanisms acting in the system, which we
are going to do here.

In the current work the anisotropic reference hypernetted
chain (ARHNC) [27] and the anisotropic hypernetted chain
(AHNC) [28] approximations are used. The former
gives pair distributions and density profiles in excellent
agreement with simulations (often within the accuracy of
the simulation) [27, 29]. The AHNC approximation,
which is somewhat simpler numerically, gives equally good
results [7, 8, 29, 30] except when the local ionic density is
very high, which, for example, can happen for monovalent
counterions near a highly charged surface. For multivalent
counterions these kinds of ion densities are reached for very
high surface charge densities (higher than those relevant
here). Furthermore, the approximation does not work for
multivalent ions at very low electrolyte concentrations and very
high electrostatic coupling [31, 32], but such conditions are,
however, not of relevance in this work. Thus, the use of these
approximations gives a very good account of the properties of
the systems we shall discuss.

The typical situation where charge inversion occurs due
to ion–ion correlations is depicted in figure 1. It shows
the charge density profile ρ(z) for an electric double layer
outside a surface with σ = −0.160 C m−2 (1.0 nm2 per unit
charge (−e0)) in contact with a 0.35 M aqueous 2:2 electrolyte
solution as calculated in the ARHNC approximation [9]. The
ionic diameter is a = 0.425 nm and the temperature is T =
298 K. The charged surface is located to the left of z = 0
and the bulk electrolyte lies to the right outside the figure.
The figure also shows the ion–wall distribution function hi (z),
which describes the relative deviation of the ion density from
the bulk value and is defined from

hi (z) = gi(z)− 1 = ni (z)− nbulk
i

nbulk
i

, (5)

where gi(z) = ni(z)/nbulk
i . The charge density ρ(z) is

proportional to the difference between h+(z) and h−(z):

ρ(z) = q+n+[h+(z)− h−(z)]

4
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a b

Figure 1. (a) Charge density profile ρ(z) and (b) ion–wall distribution function hi(z) for a diffuse electric double layer outside a wall with
surface charge density σ = −0.160 C m−2 (1.0 nm2 per unit charge (−e0)) in contact with a 0.35 M aqueous 2:2 electrolyte solution. In (a)
the full line shows the profile calculated with proper consideration of ion–ion correlations, while the dashed line shows the
Poisson–Boltzmann (PB) prediction that neglects such correlations. The filled circle indicates the point where the charge density changes
sign. The filled square shows the contact density at the wall surface and the filled triangle shows the corresponding PB prediction. In (b) the
full line is the distribution function h+(z) for counterions (cations) and the dashed line is h−(z) for the coions (anions). The insets show the
same plots on an expanded ordinate scale.

and changes sign at z ≈ 5 Å (marked with a black circle in
the left panels of the figure), which is where h+(z) and h−(z)
cross.

The total charge (per unit area) to the right of the circle,
z > 5 Å, is negative (same sign as the surface charge).
Electroneutrality then demands that the total charge in z < 5 is
positive (i.e. the sum of charges of the surface and the diffuse
layer in 0 < z < 5). Thus, the number of counterions per unit
area in the region, 0 < z < 5, is larger than that required to
neutralize both the surface charge density and the coions in the
same region, i.e. charge inversion (overcharging) has occurred.

The PB prediction for ρ(z) is also shown in the figure and
here the total charge in z < z ′ for any z ′ is always negative
while the charge in z > z ′ is positive as mentioned earlier in
section 2. In the interval 0 Å < z � 3 Å the actual charge
density (from ARHNC) is larger than the PB prediction except
in a tiny interval at contact with the surface, where the PB
charge density is higher. Both these features are relevant as
we are going to see; the latter is due to a lower contact density
of counterions at the surface compared to the PB prediction.
The charge inversion disappears when σ approaches zero (not
shown), so the qualitative behaviour is then more similar to the
PB prediction, but quantitatively there are still differences, see,
for example, reference [11, 23].

The charge inversion is associated with the diffuse ‘layer’
of mainly counterions near the surface; for the case in figure 1
it has a width of about 5 Å. Half of the counterions in this
layer are located within 1 Å from the surface and 75% within
2 Å. Virtually no coions are located at z � 2 Å. The surface
charge is neutralized by the charge located in z < 3.5 Å. The
charge in 3.5 Å < z < 5 Å corresponds to an excess equal

to 3% of the surface charge (in absolute value). This charge is
a measure of the charge inversion and it is neutralized by the
excess coions in z > 5 Å.

Figure 2 shows the corresponding charge density profiles
for the case of a 0.1 M aqueous 3:1 electrolyte solution (csalt =
95 mM) for a range of surface charge densities from σ =
−0.267 to −0.0032 C m−2 (corresponding to 0.6–50 nm2 per
unit charge) and an uncharged surface, σ = 0. In this case
the AHNC approximation has been used in the calculations.
The trivalent ions are counterions to the surface, a = 0.45 nm
and T = 298 K. For high values of σ (low area per unit
charge), the charge density profiles are very similar to figure 1,
while for low σ the curves change character. In the latter
cases both anions and cations are depleted near the surface, the
trivalent cations to a larger extent on a relative scale than the
monovalent anions. The ion–wall distribution functions hi(z)
for the uncharged case, σ = 0, are shown together with ρ(z)
in figure 3, where we see the large depletion of trivalent ions
near the surface. The resulting negative charge density near
the surface leads to a build up of trivalent ion concentration
some distance away from the surface, so ρ(z) behaves from the
maximum onwards similar to the cases with charged surfaces.

The point where the charge density changes sign from
positive to negative (marked by a circle for each curve in
the right panes of figure 2) moves to higher z values when
σ decreases in all cases shown. Like in the 2:2 case above,
the number of counterions in the region between the surface
and the circle is larger than that required to neutralize both
the surface charge density and the coions in the same region,
so charge inversion has occurred. This is true for all cases
including the uncharged surface, so the latter behaves when

5
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a b

Figure 2. (a) Charge density profiles for 0.1 M 3:1 aqueous electrolyte solution near a surface with different surface charge densities ranging
from σ = −0.267 to −0.0032 C m−2 (corresponding to 0.6–50 nm2 per unit charge as shown in the caption inside the panel) and an
uncharged surface, σ = 0. The trivalent ions are counterions to the surface. (b) The same curves on a different scale for the cases 0.6–10 nm2

per unit charge. The inset shows the curves for the cases 10–50 nm2 per unit charge and the uncharged surface on a further expanded ordinate
scale. The filled circles indicate the points where the charge density changes sign from positive to negative values with increasing z in the
respective cases.

Figure 3. Charge density profile (dotted curve) and ion–wall
distribution functions (marked ⊕ for trivalent cations and 
 for
monovalent anions) for 0.1 M 3:1 electrolyte solution near an
uncharged surface. The charge density profile is the same as the
dotted curve in figure 2. The inset shows the same curves for large z
on an expanded ordinate scale.

seen from a large distance as if the surface is weakly positively
charged despite that σ = 0. For the case 1.0 nm2 per unit
charge (σ = −0.160 C m−2, same σ as for the 2:2 case
above) the sign change of ρ(z) occurs at z = 4.2 Å (the
circle in the figure) and the surface charge is neutralized by the
diffuse layer charge in z < 1.8 Å. The charge in 1.8 Å <

z < 4.2 Å corresponds to an excess equal to 12% of the
surface charge (in absolute value). This charge is neutralized
by the excess coions to the right of the circle in the figure,
z > 4.2 Å. The corresponding numbers for 0.6 nm2 per unit

charge (σ = −0.267 C m−2) are the sign change at z = 3.1 Å,
neutralization in z < 1.1 Å and excess of 15% on either side
of the circle (positive to the left and negative to the right). For
2.5 nm2 per unit charge (σ = −0.064 C m−2) the numbers are
z = 8.1 Å, z < 4.7 Å and 6%.

For the uncharged surface the sign of ρ(z) changes twice;
at z = 4.9 and 26 Å, where the latter corresponds to the sign
change for the charged surfaces we have discussed so far and
the former exists only for very weakly charged surfaces. The
total charge in z < 4.9 Å is −2.3 × 10−3 C m−2 (70 nm2

per unit charge). This charge is neutralized by an excess of
cations in 4.9 Å < z < 23 Å, i.e. total charge from anions and
cations are equal in z < 23 Å. The excess of cations continues
up to the sign change of ρ(z) at z = 26 Å (the circle in the
figure), but the total excess charge to the left of the circle is
only 10−5 C m−2 and an equal amount of opposite sign to the
right of the circle.

The important feature is the separation of charge that
happens close to the surface despite that σ = 0 and it
has consequences for particles that enter into this region.
Nevertheless, the separation of charge around the circle in
the figure and the residual charge density for large z is of
some interest in principle despite that the effect is very small
here. In the inset of figure 3 this behaviour is seen as the
slightly negative charge density for large z (to the right of the
circle), where the charge density contribution from the anions
dominates over that from the cations. Thus charge inversion
has taken place and the effective surface charge density σ 0 is
positive for all σ � 0 for the 3:1 electrolyte investigated
(remember that σ 0 by definition has the same sign as ψ(z)
for large z and hence the opposite sign to ρ(z) there). This
is different from 2:1 electrolytes (with divalent cations) [24]

6
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where the effective surface charge has the same sign as
the bare surface charge for small negative σ , but eventually
turns positive due to charge inversion when σ becomes more
negative (note that in [24] the anions are divalent and the
cations monovalent, but here we have inverted all charges).
For both 3:1 and 2:1 electrolytes an uncharged surface has a
nonzero effective charge, but it is accordingly positive for 3:1
and negative for 2:1. For the 2:2 case, on the other hand,
the effective charge for σ = 0 must be exactly zero due to
symmetry (provided the anions and cations only differ by the
sign of their charges).

Let us now return to nonzero σ . In all cases the charge
inversion happens in a diffuse layer that is several ångströms
wide. Thus it is not appropriate to think about this phenomena
as an adsorption of counterions at the surface, i.e. as a layer of
ions in direct contact with the surface. Some of the properties
of the system may be modelled as a layer of ions at the
surface, but this kind of approach misses the three-dimensional
liquid features of the system. If the ions have a specific
affinity to the surface, i.e. they are brought there, for instance,
by some specific short-ranged nonelectrostatic interaction, the
situation can, however, be quite different. Then a layer of
ions can be appropriate. In this work we restrict ourselves
to charge inversions associated solely with strong ion–ion
correlations, i.e. when such specific interactions are absent. In
correlation-driven inversions the diffuse layer characteristics of
the inhomogeneous electrolyte near the surface are important
in most cases of practical interest.

4. The environment of each ion in the double layer

What, precisely, is causing the charge inversion? For this
to happen, the counterions near the surface must on average
experience a sufficiently strong force directed towards the
surface and/or the coions experience a force directed in the
opposite direction, forces that are stronger than those predicted
by the PB theory which does not show any charge inversion.
Let us consider an arbitrary ion of species i near a surface.
We denote this ion as ‘ion I’. The average force that acts
on ion I is due to interactions with the surface and with the
ions around the ion. In the PB theory the latter interactions
are calculated under the assumption that ion I does not affect
the distribution of the other ions around it and that there
are only electrostatic forces. The force is thereby calculated
from the unperturbed charge density distribution ρ(z) despite
that the neighbourhood of ion I must have a charge density
that is perturbed by the interactions with the ion. This
simplification is a consequence of that the ion–ion correlations
are neglected. The interaction energy (potential of mean force)
that ion I experiences is thereby equal to qiψ(z) in the PB
theory, where ψ is given by equation (2), i.e. the standard PB
relationships.

Let us now consider the actual situation for ion I and
its environment. No other ion can come closer to ion I than
a distance a between the ion centres. There must therefore
be a cavity of radius a around the ion where no other ionic
charge can enter. This is depicted in figure 4(b) which shows
a contour plot of the unperturbed charge density distribution

ρ(z), but where we have cut a hole with radius a around ion I
(here assumed to be a cation located 3 Å from the surface).
The contour plot outside the cavity shows the same density
distribution as in panel a of the figure, which is the same as
in figure 1(a).

The charge density outside the cavity is, however, not
unperturbed by the interactions with ion I as assumed in
figure 4(b). It is polarized by the electrostatic interactions with
ion I and the density around the ion is also affected by the hard
core interactions (excluded-volume effects in the presence of
the cavity). The resulting charge density distribution around
ion I is depicted in figure 4(c). We see that the positive charge
of ion I repels other positive ions (counterions to the surface),
which makes the charge density above and below the ion in the
figure to be smaller than in the unperturbed case in panel (b).
Furthermore, the attraction of negative ions (and repulsion of
positive ones) causes a build up of a negative charge density
to the right of the ion in the figure. The actual electrostatic
force that ion I experiences is due to this perturbed charge
density around it. In the PB approximation one neglects both
the cavity and the polarization. Instead one assumes that the
charge density is ρ(z) everywhere, even inside ion I.

Before we continue, let us make it very clear what
figure 4(c) really shows. There are two equivalent ways to
describe it. In the first, we pick an arbitrary ion in the
electrolyte (ion I) and follow it in time (in the example we
have picked a cation). We now look at its environment from
the perspective of the ion. Each time ion I is located 3 Å from
the surface we record the positions of all other ions in the
system. We do this for a long time and obtain a large number
of records of particle positions. In all these records particle
I is located 3 Å from the surface and the other ions are in
various locations in the available space. The average charge
distribution from these records is what is depicted in the figure.
Incidentally, if we instead would calculate the average cation
and anion distributions from the records, we would obtain the
cation–cation and cation–anion pair distributions for the case
when a cation (ion I) is 3 Å from the surface. (Note that if
we keep all records of the particle positions, i.e. not only those
where ion I is 3 Å from the surface, the average charge density
from all these records becomes equal to ρ(z) and the anion and
cation distributions become equal to the ion density profiles.)
The second way to describe figure 4(c) is that it shows the
average charge distribution around ion I when it is held fixed
at a point 3 Å from the surface and all other ions are free to
move. That the two different ways are equivalent follows from
the fact that the translational and configurational degrees of
freedom are independent of each other in classical statistical
mechanics, so it does not matter whether ion I is mobile or
stationary.

The charge distribution shown in figure 4(c) is calculated
from the pair distributions obtained in the ARHNC approxi-
mation, where all ions of each species are treated in exactly the
same manner. The corresponding charge distribution around
an anion and around a cation at various distances from the sur-
face is shown in figure 5, i.e. for various choices of ‘ion I’ and
positions of it. Note that all ions around ion I are fully in-
teracting and correlating with each other, so if we look at the
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Figure 4. Charge density in a 2:2 electrolyte near a charged wall for the same system as in figure 1. (a) The charge density profile ρ(z),
i.e. the same as the full curve in figure 1(a). (b) The same ρ(z) shown as a contour plot in a cross-section perpendicular to the surface, but
with a cavity cut out around a counterion (cation ⊕) located 3 Å from the surface. The cavity shows the region where no ionic centres can
enter because of hard core exclusion and its radius is equal to the ionic diameter. The wall surface is located to the left of the figure and z = 0
indicates the point of closest approach of the ion centres to the wall. The bulk electrolyte lies to the right of the figure. (c) The actual average
charge distribution ρ(2) around the cation when ion–ion correlations are properly considered. The difference between the charge distributions
in (c) and (b) is the ‘polarization effect’ in the surrounding electrolyte due to the interactions with the ion. Comment for greyscale printouts of
the figure: the charge density is positive close to the wall and negative beyond z ≈ 5 Å in panels (a) and (b). In panel (c) the charge density to
the right of the cation is negative.

environment of each and every one of them from the perspec-
tive of the ion we would obtain the same average distributions
as those in figure 5. In panels (a)–(d) of figure 5 we see how
the charge density profile near the surface is distorted when a
counterion (cation) is brought towards the surface. The other
counterions between the ion and the surface are repelled away
from the ion. At the same time the ion atmosphere around the
ion, which is spherically symmetric when the ion is far from
the surface, also becomes distorted. Similarly, for a coion (an-
ion) we see the corresponding distortions in panels (e)–(h), but
here the counterions are strongly attracted towards the region
between the ion and the surface. They are attracted by both the
anion and the negative surface charge.

5. Forces acting on the ions

Let us now consider the forces that act on ion I for
various distances z from the surface. Due to cylindrical
symmetry around an ion near a planar surface, the only
nonzero component of the average force lies in the direction
perpendicular to the surface. A force is counted positive
when it is directed outwards from the wall (in the positive z
direction) and negative when it is directed towards the wall.
The electrostatic force, f el

i (z), on the ion equals the Coulomb
force from the charge distribution depicted in figure 5 and
from the surface charge density. The force from the charge
distribution varies in a complicated fashion with z since the

8
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Figure 5. (a)–(d) Same charge density ρ(2)(r′|z, i) as in figure 4(c) but for various positions, z, of a counterion (cation, i = +). In (a) z = 10,
(b) z = 6, (c) z = 3 and (d) z = 0 Å (in the latter the ion is in contact with the wall surface, which lies below the figure). Panel (c) is the same
as in figure 4(c). Panels (e)–(h) show the corresponding data for a coion (anion, i = −). In (e) z = 10, (f) z = 6, (g) z = 3 and (h) z = 0 Å.
The density has cylindrical symmetry around a vertical axis through the centre of the ion in each case. (Figure based on data from [9].)
Comment for greyscale printouts of the figure: the charge density is positive close to the wall in all panels. It is also positive around the anion
in panels (e)–(h), while it is negative around the cation in panels (a)–(b) and around the upper half of the cation in panels (c)–(d).

distribution around ion I depends on the location of the ion,
while the force from the surface charge is constant irrespective
of distance (a standard result for the force from an planar sheet
of charge with, in principle, infinite lateral extent).

In addition to the electrostatic force there is a force from
the core–core interactions, i.e. from collisions on ion I from
other ions that on average push the ion towards or away from
the surface. We call this force f core

i (z). The total force

fi (z) = f el
i (z)+ f core

i (z) (6)

is related to the potential of mean force wi (z) for the ion by

fi (z) = −dwi(z)

dz
(7)

and the density distribution is given by

ni(z) = nbulk
i e−βwi (z). (8)

Thus an analysis of the forces gives the information needed
to understand the behaviour of the density profiles and

thereby phenomena like charge inversion. Consider the charge
distribution around an ion of species i located at distance z
from the surface, i.e. a distribution like that depicted in figure 5.
We place the origin of the coordinate system at the line that
goes through the ion centre and is perpendicular to the surface.
The ion thereby has coordinates r = (0, 0, z). The charge
distribution at point r′ = (x ′, y ′, z′) around the i ion located at
z is denoted as ρ(2)(r′|z, i), where the superscript (2) indicates
that it is a pair distribution, i.e. a density around an ion (see
the appendix, equation (18), for the formal definition). From
Coulomb’s law it follows that

f el
i (z) = qi

[
σ

2εrε0
−

∫
z′ − z

4πεrε0 D3
ρ(2)(r′|z, i) dr′

]
, (9)

where D = [x ′2 + y ′2 + (z ′ − z)2]1/2 is the distance from the
ion centre to point r′ and the integration is over all space. The
first term in the square brackets is the force from σ on a unit
charge and in the integral the factor (z ′ − z)/D projects out
the z component of the force while the remaining D2 in the
denominator comes from Coulomb’s law.

9
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The core–core collision force f core
i (z) acts on the surface

of the ion when other ions collide with it (momentum transfer).
The force from each collision is perpendicular to the surface
of the ion and on average the pressure from all collisions at a
particular point at the surface is proportional to the average
contact density of ions there (it is the surface of the cavity
around the ion, the sphere of radius a, that is considered here
rather than the surface of the ion itself). The proportionality
constant is kBT , the same as for collision from an ideal
gas (this is a consequence of the fact that the Maxwell–
Boltzmann distribution of particle velocities holds in classical
statistical mechanics, irrespective of the interactions). The
contact density at the sphere surface can be calculated from
the ion–ion pair distribution functions that we have available.
From the cylindrical symmetry around the ion it follows that
the density is the same for all points on the surface with the
same coordinate z ′. We denote the contact density at z ′ as
ncontact(z ′|z, i), where z is the coordinate of the ion centre, as
before (the formal definition of ncontact is given in the appendix,
equation (19)). Note that ncontact is the total density for all
species of ions present. The average core–core collision force
on the ion equals

f core
i (z) = −kBT

∫ z+a

z−a

z′ − z

a
ncontact(z ′|z, i)2πa dz′, (10)

where the factor (z ′ − z)/a projects out the z component of the
force and 2πa dz ′ gives the area element on the sphere surface
(the two a actually cancel in the integrand). The integrand is
zero when z ′ < 0 since the density is zero there. For an ion in
contact with the wall surface, z = 0, the integral is always
positive because the only contribution comes from z ′ > 0
where the integrand is positive and hence f core

i (0) < 0. This
expresses the fact that an ion at z = 0 has collisions only on
the outer half-sphere (on the solution side), which pushes it in
the negative z direction (towards the surface).

In the analysis of the forces we will divide both f el
i

and f core
i into two parts, the ‘cavity’ and ‘polarization’

contributions. The former is from the unperturbed density in
the presence of the cavity of radius a around the ion. The latter
is due to the polarization of the electrolyte outside the cavity
from the electrostatic interactions with the ion and the core–
core interactions. For f el

i we therefore first consider a charge
distribution like that depicted in figure 4(b), where the charge
density outside the cavity is unperturbed. The electrostatic
force that acts on the ion from the charge distribution ρ(z)
outside the cavity and zero inside is denoted f el(Cav)

i , where
‘Cav’ stands for cavity. We also include the force from the
surface charge density σ in f el(Cav)

i (this is necessary to obtain
a finite force). The remainder of f el

i is due to the fact that
the charge density outside the ion in reality looks like that in
figure 4(c), where the polarization is taken into account and we
define

f el(Pol)
i (z) = f el

i (z)− f el(Cav)
i (z), (11)

where ‘Pol’ stands for polarization. The polarization part also
contains the redistribution of charge needed to maintain local
electroneutrality, qi + ∫

ρ(2)(r′|z, i) dr′ = 0.

The force f el(Cav)
i , satisfies the following simple

relationship [10]:

d f el(Cav)
i (z)

dz
= qi

2εrε0a

∫ z+a

z−a
ρ(z′) dz′. (12)

For ions close to the surface a large part of the integration
interval lies in z ′ < 0 where ρ(z ′) = 0. From equation (12)
we obtain f el(Cav)

i (z) by integration from ∞ to z, where we put
f el(Cav)
i to zero at infinity.

For f core
i we can do the corresponding subdivision. When

the unperturbed density is used outside the cavity, the contact
density at z ′ is simply

∑
j n j(z ′), which should replace ncontact

in equation (10). Then the force from the collisions becomes
the same for an anion and a cation. Here we shall do something
slightly better. The collisions on a cation will be dominated by
anions since cations are repelled by the electrostatic interaction
and will reach the surface to a lesser extent. The corresponding
is true for collision on an anion. Therefore we take

f core(Cav)
+ (z) = 2πkBT

∫ z+a

z−a
(z − z ′) n−(z ′) dz′

f core(Cav)
− (z) = 2πkBT

∫ z+a

z−a
(z − z ′) n+(z ′) dz′

(13)

and define

f core(Pol)
i (z) = f core

i (z)− f core(Cav)
i (z). (14)

We expect that f core(Pol)
i is also dominated by collisions

with ions of the opposite sign since they are attracted
electrostatically to the surface of the ion, which makes the
contact density large.

The total force on an ion in the case of unperturbed density
profiles in the presence of the cavity is

f (Cav)
i (z) = f el(Cav)

i (z)+ f core(Cav)
i (z)

and the total force from the polarization is

f (Pol)
i (z) = f el(Pol)

i (z)+ f core(Pol)
i (z).

We shall compare f (Cav)
i and f (Pol)

i with the total force fi =
f (Cav)
i + f (Pol)

i for the various cases in order to deduce how large
an influence each of them has. We shall denote the component
f (Cav)
i as the ‘cavity force’ and f (Pol)

i as the ‘polarization
force’.

6. Analysis of the forces; charge inversion mechanism

In figure 6 the various forces as functions of z are shown
for the same 2:2 electrolyte system as discussed earlier. For
easy reference, the ion density profiles ni (z) are also shown
in the figure together with the corresponding PB prediction.
The charge density profile for this system is shown in
figures 1 and 4. Let us start with the force on a counterion,
figure 6(b). For small z the total force f+(z) is strongly
attractive (i.e. directed towards the surface), which according
to equations (7)–(8) corresponds to the steeply increasing
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a

b

c

Figure 6. (a) The ion density profiles ni(z) for the same 2:2
electrolyte system as in figures 1, 4 and 5. The full lines show the
profiles calculated with proper consideration of ion–ion correlations,
while the dashed lines show the Poisson–Boltzmann (PB) prediction
(marked ⊕ for cations and 
 for anions). The inset in (a) shows the
same curves on a different scale. The counterion contact density is
shown as a symbol: a filled square for the actual density and a filled
triangle for the PB prediction. Panel (b) shows the forces on a
counterion (cation) and panel (c) the forces on a coion (anion) as
functions of the distance, z, from the charged surface in the same
system. The full line shows the total force fi (z), the long dashes
show the cavity force f (Cav)

i (z), the short dashes show the
polarization force f (Pol)

i (z) and the sparse dots show the electrostatic
part of the cavity force f el(Cav)

i (z) (in panel (b) the latter virtually
coincide with the f (Cav)

i curve). The insets of panels (b) and (c) show
the polarization force (same as in the main plot) and its components:
the dashed–dotted line shows the electrostatic part f el(Pol)

i (z) and the
dots show the contribution from core–core collisions f core(Pol)

i (z). A
force is positive when it is directed away from the surface (repulsion)
and negative when it is directed towards the surface (attraction).
(Based in part on data from [9].)

counterion density near the surface. By comparing f (Cav)
+ and

f (Pol)
+ with the total f+ in the figure we see that the cavity force

constitutes by far the largest part of f+ for z < 3 Å. In fact, the
polarization force is repulsive for most of the z values where
n+(z) exceeds the PB prediction. In 2.7 Å < z < 6.4 Å both
components contribute to the build up of counterion density
there. Above z = 8 Å the contributions from f (Cav)

+ and f (Pol)
+

have similar magnitudes and are rather small.
For coions, figure 6(c), the situation is similar for small z

(except for the sign). The total force f− is strongly repulsive,
which corresponds to the decreasing coion density near the
surface, and it is dominated by f (Cav)

− . In this case f (Pol)
− acts

in the same direction for z < 4.7 Å. The attractive regime of
f− for z > 5.4 Å corresponds to the build up of the coion
density peak around z = 5.4 Å in panel (a) of the figure.
Here the polarization force gives the largest contribution, but
the cavity force contributes somewhat to the attraction in an
interval above z > 6.7 Å. As we shall see it is the electrostatic
contribution to f (Pol)

− that gives the attraction, which hence
causes the coion density peak.

Thus we can conclude that f (Cav)
i is the main component of

the force that leads to the excess counterions near the surface.
To see whether it is the electrostatic or the core collision
contribution to f (Cav)

i that is most important, we have plotted
the electrostatic one, f el(Cav)

i , in the figure. For counterions,
the electrostatic contribution virtually coincides with f (Cav)

+ ,
so the core contribution is negligible. For coions, the core
contribution is larger and gives rise to the difference between
f (Cav)
− and f el(Cav)

− seen in the figure. This is a consequence
of appreciable contact densities from the large amount of
counterions close to the wall surface. Overall, the electrostatic
contribution is the most important part of f (Cav)

i for both coions
and counterions.

Incidentally one should note that the electrostatic force
from the unperturbed charge distribution in the absence of the
cavity (i.e. calculated as in the PB approximation but based on
the actual ρ(z) in figure 1 rather than the PB profile) gives far
too weak an attraction of counterions and repulsion of coions
(not shown). Thus the presence of the cavity is essential here.

The main reason for the charge inversion can hence be
described as follows. For a counterion in the vicinity of the
surface, the hard core exclusion prevents other counterions to
enter into the region between the ion and the surface. This
effect is, for example, seen in figure 5(c) where the cavity
makes the region between the ion and the surface void of
ions. Thereby the surface charge becomes exposed (more
exposed than if the cavity were absent) and can strongly attract
the counterion. As noted above, the polarization around a
counterion contributes to the attraction toward the surface
when the counterion is located at z > 2.7 Å. This attraction is
mainly caused by ion collisions on the outward (solution) side
of the counterion, as will be further discussed below. In the PB
approximation all these effects are absent and the counterions
are free to enter the cavity, which reduces the attraction towards
the surface charge.

The PB approximation also underestimates the repulsion
of coions for similar reasons. For a coion close to the surface,
the hard core exclusion effect makes the exposed surface
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charge to strongly repel the ion, more strongly than in the PB
approximation where counterions can enter into the cavity. As
we have seen, polarization also contributes to the repulsion
of the coion near the surface, which will be further discussed
below.

Thus the electrostatic effects of the cavity constitute the
main ingredient in the mechanism for charge inversion, but
the polarization effects are also essential as they contribute to
the build up of ionic density a few ångströms away from the
surface. The reason why the polarization gives a relatively
small contribution, f (Pol)

i , to the total force can be found
in the insets of figures 6(b) and (c), where its contributions
f el(Pol)
i and f core(Pol)

i are plotted together with f (Pol)
i (which

is f el(Pol)
i + f core(Pol)

i ). For a coion the electrostatic and core
contributions are quite large (panel (c)), but they cancel each
other to a large extent. This can be explained as follows.
When ions around the coion act with an attractive electrostatic
force on the ion, they are themselves attracted to the ion and
collide more frequently with it, i.e. the contact density becomes
high. This leads to an increased repulsion that counteracts the
electrostatic attraction (and vice versa for ions that are repelled
electrostatically). In figures 5(f)–(h) we can see the reason for
the large values of the electrostatic and core contributions to
f (Pol)
− . The counterions are strongly attracted to the region near

the anion and the surface. In panels (f) and (g) this leads to
a collisional repulsion of the anion away from the surface and
an electrostatic attraction towards the surface. In panel (h) the
counterion density is built up on the upper side of the anion
(no ions can be on the other side), which leads to a collisional
force towards the surface and an electrostatic force away from
it, cf the inset of figures 6(c).

The enhancement of the collisional force from the
interactions with the ion is illustrated in figure 7, where we
compare f core(Cav)

i with the total f core
i plotted on different

scales. Qualitatively the curves are remarkably similar, but
f core
i is about six times larger than f core(Cav)

i for this system.
The difference is due to the polarization effect; remember that
f core(Cav)
i is calculated solely from the unperturbed ion density

profile of the oppositely charged species, equation (13).
For a counterion we see from figures 5(b)–(d) that the

polarization is smaller than for a coion (anion) and in the
inset to figure 6(b) we see that the electrostatic and core
contributions to f (Pol)

+ indeed are smaller compared to the inset
to panel (c). The cancellation of the two contributions is less
pronounced for a counterion, but it still exists for some z. An
exception is the attraction around z = 5 Å, which is caused by
both contributions; the collisional part is largest as mentioned
above.

An important feature of figure 6(b) is that f (Pol)
+ is

repulsive near the surface, which is caused by the electrostatic
part. As seen in the inset, the repulsion is only weakly
counteracted by the collisional contribution for small z. In
figure 5(d) we see that the reason for the electrostatic force
in the direction away from the surface is that there is a negative
charge density above the cation. This is caused by a rather high
concentration of anions there (the remainder of the negative
ion atmosphere of the counterion shown in figure 5(a)). These
ions pull the cation away from the surface electrostatically and

Figure 7. A comparison of the core–core collisional part f core
i (z) of

the total force (full curve) and the corresponding part f core(Cav)
i (z) of

the cavity force (dotted curve) on an cation and an anion (curves
marked ⊕ and 
, respectively) for the same 2:2 electrolyte system as
in figure 6. The ordinate scale to the left applies to the full curves and
that to the right to the dotted curves.

hence they reduce the attraction towards the surface from the
surface charge. In fact, this is the reason why the density of
counterions at contact with the surface is lower than in the PB
prediction, as can be seen in the inset of figure 6(a). Note
that the total ionic concentration at contact is related to the
bulk pressure, Pbulk, of the electrolyte solution via the contact
theorem, which says that

kBT
∑

j

n j (0)− σ 2

2εrε0
= Pbulk = kBT

∑

j

nbulk
j + Pbulk,ex

(15)
where Pbulk,ex is the excess pressure, i.e. the contribution to
the pressure from ion–ion interactions in the bulk. In the
PB approximation for electric double layers, which treats the
bulk electrolyte like an ideal gas, we have Pbulk,ex = 0,
but otherwise equation (15) holds in this approximation. A
lowering of the contact density of ions at the surface compared
to the PB prediction is therefore equivalent to Pbulk,ex <

0, i.e. that the ion–ion interactions act cohesively in the
electrolyte solution. These facts emphasize the point that the
charge inversion from ion–ion correlations is due to events that
occur in the entire diffuse layer near the surface and not in some
layer of ions in contact with the surface.

Applied to the case of an uncharged surface, equation (15)
implies that kBT

∑
j [n j(0)−nbulk

j ] = Pbulk,ex. The lowering of
the total ion density near the surface seen in figure 3 for the 3:1
electrolyte is therefore congruent with Pbulk,ex < 0. The force
that pulls ions away from the uncharged surface originates
from the ion atmosphere of each ion. This atmosphere has a
total charge equal to the ionic charge but of opposite sign. For
an ion in contact with the surface the atmosphere is entirely
located on the side away from the surface—no ions can be
located on the other side. Therefore the force is directed
away from the surface. The charge of the atmosphere for a
trivalent ion is larger than for a monovalent ion and hence the
electrostatic force on the trivalent ion is larger. This is why
the cation density in figure 3 is more affected near the surface
than the anion density and is the cause of the charge separation
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there. For a 2:2 electrolyte outside an uncharged surface the
ionic density will decrease near the surface for the same reason.
The anion and cation density will, however, be identical and
there will be no charge separation in this case (provided the
anions and cations only differ by the sign of their charges).

Let us now turn to a 3:1 electrolyte system with high
surface charge density. In figure 8 the force curves are shown
for the case 1.0 nm2 per unit charge (σ = −0.160 C m−2, same
σ as for the 2:2 case in figure 6). The ion density profiles ni(z)
are also shown in the figure together with the corresponding
PB prediction. The charge density profile ρ(z) for this system
is the full line in figure 2. Qualitatively the results for the 3:1
system in figure 8 are similar to those for the 2:2 system in
figure 6, but there are quantitative differences. For counterions,
figure 8(b), we see that the cavity force dominates for small
z in the region where the counterion density is larger than
the PB prediction and we also see that the polarization force
is attractive near the surface. This is like the 2:2 case. For
z � 3 Å the polarization contributes to a considerable extent
to the build up of the counterion density, more so than in the
2:2 case. This is not surprising since the counterions have a
larger valency here. The shallow concentration minimum for
counterions around z = 9 Å is mainly caused by the repulsive
cavity force in this region.

For coions, figure 8(c), we see that a repulsive cavity
force dominates for small z, just as for the 2:2 case. It is
the electrostatic part that gives the main contribution to this
force. The coion density peak around z = 5 Å is caused by
both the cavity and polarization forces which are attractive in
a range above z = 5 Å. Compared to the 2:2 case, f (Pol)

− has
a smaller influence, which is not surprising since the coions
have a smaller valency here. Overall, it is f (Cav)

− that dominates
nearly everywhere in the range shown.

It remains to consider the other 0.1 M 3:1 electrolyte
systems of figure 2. Investigations of the forces for the systems
with high surface charge densities, σ = −0.267 to about
−0.064 C m−2 (corresponding to 0.6–2.5 nm2 per unit charge)
show essentially the same picture as in figure 8 and are not
shown. The systems with low σ behave similarly to the
uncharged case, see above.

7. Conclusions

To summarize we conclude that an analysis of the forces on
the ions in the double layer gives detailed information about
the mechanisms behind the structure of the double layer. The
electrostatic effect from the excluded volume around each ion
near the surface gives a very important contribution. The
force on an ion from the charge density profile with a cavity
around the ion (the electrostatic cavity force) dominates in the
immediate vicinity of the surface, approximately the nearest
few ångströms. There is also a force contribution from the
polarization of the electrolyte surrounding an ion due to the
interactions with the latter (the polarization force). Close to
the surface this contribution is smaller than the cavity force,
but it gives rise to a significant reduction in the contact density
of ions at the surface. For an ion with low valency the
cavity force gives a dominant contribution also a bit further

a

b

c

Figure 8. The same kind of curves as in figure 6 but for a 0.1 M 3:1
electrolyte system with surface charge density σ = −0.160 C m−2

(1.0 nm2 per unit charge), i.e. the same system as for the full line in
figure 2. The notation is the same as in figure 6.

away from the surface, while for ions with high valency
the polarization effects give the dominant contribution there.
The polarization force contains large contributions from both
electrostatic interactions and ion–ion core collisions. These
two contributions counteract each other to a large extent, so
the net polarization force is appreciably smaller than each of
them alone. The balance between these different effects is quite
intricate in some regions.

As an example, the mechanism for charge inversion from
ion–ion correlations was investigated and it was found that
it is essentially the same for 2:2 and 1:3 electrolytes at high

13
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surface charge densities σ . The electrostatic consequences
of the excluded volume is, to a large extent, that the surface
charge become exposed for ions close to the surface, so the
unscreened surface charge can strongly attract counterions and
repel coions. This contributes greatly to the effects that lead
to charge inversion. If the presence of a cavity around each
ion is neglected as in the Poisson–Boltzmann approximation,
the ions that are then allowed to enter the exclusion zone will
screen the surface charge to a large extent, which diminishes
the net effect from the latter.

The polarization force is also essential for the charge
inversion. It contributes to the build up of counterionic density
a few ångströms away from the surface and a coion layer
outside the counterion layer. This force is also neglected
in the Poisson–Boltzmann approximation. The analysis of
the mechanisms shows that events that take place in the
entire diffuse layer are important for the understanding of
charge inversion caused by ion–ion correlations. At least
for conditions that are of relevance for aqueous electrolyte
systems, it is not correct to think of the phenomenon as a
property of some layer of ions in contact with the surface.

For the systems with lower σ the behaviour gradually
approaches that of the uncharged surface when σ decreases,
but the charge inversion remains for the 3:1 electrolyte,
although to a small degree. For an uncharged surface there is a
charge separation in the electrolyte and the surface behaves in
many respects as if it has the same charge as the monovalent
species. The consideration of the pair distributions for the
ions near the surface gives insight into this behaviour. For
symmetric 2:2 electrolytes the charge inversion eventually
disappears when σ decreases towards zero and, furthermore,
charge separation does not occur outside an uncharged inert
surface for such electrolytes.

Appendix. Some aspects of the theory of distribution
functions in inhomogeneous fluids

A.1. Integral equations

For an inhomogeneous fluid the particle density ni (z) and
the pair distribution function g(2)i j (r1, r2) satisfy the following
exact relationships:

g(2)i j (r1, r2) = e−βui j (r1,r2)+h(2)i j (r1,r2)−c(2)i j (r1,r2)+b(2)i j (r1,r2) (16)

and the Ornstein–Zernike equation

h(2)i j (r1, r2) = c(2)i j (r1, r2)

+
∑

l

∫
h(2)il (r1, r3)nl(z3)c

(2)
l j (r3, r2) dr3, (17)

where ui j is the pair interaction potential, c(2)i j is the direct pair

correlation function, b(2)i j is the pair bridge function and h(2)i j =
g(2)i j − 1. These equations are complemented by an additional
exact equation for density distribution ni (z) in terms of the pair
distribution functions. There are several alternatives [33] so
none will be given explicitly here (see also [27–29]). The total
set of equations can be solved provided the bridge function b(2)i j
can be expressed in terms of the other functions or is known by

other means. In principle, b(2)i j can be expressed exactly as a

functional of all h(2)i j and ni , but in practice one must do some
approximation for it (a closure approximation).

In the AHNC approximation [28] one sets b(2)i j = 0

and in the ARHNC approximation [27, 29] one takes b(2)i j
from a reference system; in our case an inhomogeneous
hard-sphere mixture with the same density profiles as the
inhomogeneous electrolyte. The pair distribution functions
of the inhomogeneous hard-sphere system are analogously
obtained by applying the Percus–Yevick closure, which gives
very good results for such systems. The bridge function is
then extracted and inserted in the equations for the electrolyte,
which are then solved for ni (z) and g(2)i j (r1, r2). Complete
self-consistency is always attained for all functions involved
in the numerical treatment. This is achieved by an iterational
procedure.

For reference, we briefly describe the most common kind
of integral equation approximations used for inhomogeneous
fluids, where the only goal is to obtain the particle density
ni(z). These approximations, which are not used in this
work, are simpler and much less accurate. As an example
we take the HNC/MSA approach, where one applies the
HNC approximation for the one-particle distribution function
gi(z) = ni (z)/nbulk

i . This function can be written analogously
to equation (16) but for one-particle distribution functions and
one sets the one-particle bridge function bi(z) to zero. To
calculate the rest of the exponent, one utilizes the direct pair
correlation function from the mean spherical approximation
(MSA) for the homogeneous bulk fluid mixture with density
nbulk

i for each species.

A.2. Definitions of ρ(2) and ncontact

Here we give the formal definitions of ρ(2)(r′|z, i) and
ncontact(z ′|z, i) in terms of the pair distribution functions. We
assume that an ion is located at the point r = (0, 0, z), i.e. we
have selected the origin of the coordinate system such that the
x and y coordinates of the ion are zero. Then, we have

ρ(2)(r′|z, i) =
∑

j

g(2)i j (r, r′)n j (z
′)q j (18)

and

ncontact(z ′|z, i) =
∑

j

g(2)i j (r, r′)n j (z
′)
∣∣∣∣
r′ such that |r−r′ |=a

for z − a � z ′ � z + a. (19)

Note that the restriction on r′ means that it lies on the surface
of the sphere with radius a centred at r (i.e. the spherical cavity
around the ion) and that the function is only defined in the
range shown (otherwise r′ cannot lie on the sphere surface).
Due to the cylindrical symmetry around the ion, the value of
g(2)i j (r, r′) only depends on z and z ′ when |r − r′| = a.

A.3. Interaction pressure between two planar walls

Let us consider the interaction pressure between two charged
surfaces separated by distance H in the presence of an
electrolyte as discussed in the Introduction of this paper. Here
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H is the width of the slit available for the ionic centres. All
ions are assumed to have diameter a. The pressure P in the
slit between the surfaces (the perpendicular component of the
pressure tensor) can be evaluated at the midplane of the slit,
z = H/2. It consists of three parts, the ideal pressure P ideal =
kBT

∑
i ni (H/2), the electrostatic correlation pressure, Pel,

and the core–core collision pressure, Pcore:

P(H ) = P ideal(H )+ Pel(H )+ Pcore(H ) (20)

Pel arises because the ions on one side of the midplane
correlate with the ions on the other side and give rise to an
electrostatic pressure contribution between the surfaces. It is
explicitly given by

Pel(H ) = −
∑

i, j

∫ H

H/2
dz ni (z)

∫ H/2

0
dz′ n j (z

′)

×
∫

dR
∂uCoul

i j (|r − r′|)
∂z

hi j (r, r′) (21)

where the vector R = (x−x ′, y−y ′) lies in the lateral direction
and uCoul

i j (r) = qi q j/(4πεrε0r) is the Coulomb potential. Pcore

arises from collisions of ions on one side of the midplane with
ions on the other side and it equals

Pcore(H ) = 2π kBT
∑

i, j

∫ min(H,a+H/2)

H/2
dz ni (z)

×
∫ H/2

max(0,z−a)
dz′ n j (z

′)

× (z − z′)g(2)i j (r, r′)|r′ such that |r−r′ |=a. (22)

When the slit width H goes to zero Pcore → 0, which is due
to the factor z − z ′ in the integrand (both z and z ′ go to zero
in this limit). The physical interpretation is that the ions can
only collide in the lateral direction when H = 0, so there is no
perpendicular pressure component from collisions. We shall
now show that in the same limit Pel → −σ 2/(2εrε0), which is
the main objective here.

By inserting uCoul
i j and taking the z derivative in

equation (21) we obtain

Pel(H ) = 1

2εrε0

∑

i, j

∫ H

H/2
dz qi ni (z)

∫ H/2

0
dz′q j n j (z

′)

× (z − z′)
∫ ∞

0
dR

R hi j(r, r′)
[R2 + (z − z′)2]3/2

. (23)

where we have used dR = 2πR dR and |r − r′| = [R2 +
(z − z ′)2]1/2. We now split the R integral in two parts

∫ b
0

and
∫ ∞

b , where 0 < b < a. The latter integral stays finite
when H → 0, which implies that the contribution from it
in Pel goes to zero due to the factor z − z ′. It remains to
treat the contribution from the integral

∫ b
0 . We have R < a

so if H is sufficiently small we have |r − r′| < a which
implies that hi j (r, r′) = −1 and hence we can do the R
integral analytically. The result diverges like −1/|z − z ′| when
z − z ′ → 0 and hence the factor z − z ′ in front of the integral in
equation (23) is cancelled. Since electroneutrality implies that

∑
i

∫ H
H/2 dz qi ni (z) = ∑

j

∫ H/2
0 dz′q j n j (z ′) = −σ , we obtain

the anticipated result

Pel(H )→ − σ 2

2εrε0
(24)

when H → 0. The only limitation of this result for a slit with
perfectly smooth surfaces (as in the model) is that one must be
able to reach the limit H → 0 before the counterions form a
close-packed structure at the surface, which imposes an upper
limit for σ for each ion diameter value a. (For atomic surfaces
equation (24) is rather an approximate estimate.)

When H → 0 the volume of the slit (per unit surface
area) goes to zero like H . Only counterions will stay in the slit
in this limit and there must remain 2|σ |/|qcounter| counterions
per unit area, where qcounter is the counterion charge. Thus
the ion concentration increases like 2|σ |/(H |qcounter|) so we
have P ideal(H ) = kBT

∑
i ni(H/2) ∼ kBT 2|σ |/(H |qcounter|).

Thus

P(H ) ∼ kBT
∑

i

ni (H/2)− σ 2

2εrε0
∼ 2kBT |σ |

H |qcounter| (25)

when H → 0.
The pressure in the slit can alternatively be obtained from

the contact theorem:

P(H ) = kBT
∑

j

n j(z = 0; H )− σ 2

2εrε0
(26)

where the notation ‘; H ’ is used to explicitly show that
the density profile is for a slit of width H (which we have
suppressed in equations (21)–(25)). Incidentally, we note that
the contact theorem in equation (15) is for the density n j (z =
0; ∞) in this notation and P(∞) = Pbulk.

The pressure from equation (26) has the same value as
that from equation (20) for all H provided the correct pair
distributions and density profiles are used in the calculations.
In particular, in the limit H → 0 equation (26) gives the
same behaviour for P(H ) as equation (25) since

∑
j n j(0) ∼∑

j n j (H/2) when the width vanishes. Equation (26) gives
also a term −σ 2/(2εrε0) in the pressure, but the origin of it is
different compared to equation (24). (Note that the relationship
between the contact density at a surface and the interactions in
the electrolyte near the surface is not simple, see the discussion
in section 6.)

The net pressure �P is the difference between the
pressure in the slit and that in the bulk

�P = P − Pbulk. (27)

This is the relevant quantity for the interaction pressure
between planar walls and it goes to zero when H → ∞.
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ChemPhysChem 4 234

[18] Messina R 2009 J. Phys.: Condens. Matter 21 113102
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